Reference: Mohammad H, et al. (2018) Discovery of a Novel Dibromoquinoline Compound Exhibiting Potent Antifungal and Antivirulence Activity That Targets Metal Ion Homeostasis. ACS Infect Dis 4(3):403-414

Reference Help

Abstract


Globally, invasive fungal infections pose a significant challenge to modern human medicine due to the limited number of antifungal drugs and the rise in resistance to current antifungal agents. A vast majority of invasive fungal infections are caused by species of Candida, Cryptococcus, and Aspergillus. Novel antifungal molecules consisting of unexploited chemical scaffolds with a unique mechanism are a pressing need. The present study identifies a dibromoquinoline compound (4b) with broad-spectrum antifungal activity that inhibits the growth of pertinent species of Candida (chiefly C. albicans), Cryptococcus, and Aspergillus at a concentration of as low as 0.5 μg/mL. Furthermore, 4b, at a subinhibitory concentration, interfered with the expression of two key virulence factors (hyphae and biofilm formation) involved in C. albicans pathogenesis. Three yeast deletion strains ( cox17Δ, ssa1Δ, and aft2Δ) related to metal ion homeostasis were found to be highly sensitive to 4b in growth assays, indicating that the compound exerts its antifungal effect through a unique, previously unexploited mechanism. Supplementing the media with either copper or iron ions reversed the strain sensitivity to 4b, further corroborating that the compound targets metal ion homeostasis. 4b's potent antifungal activity was validated in vivo, as the compound enhanced the survival of Caenorhabditis elegans infected with fluconazole-resistant C. albicans. The present study indicates that 4b warrants further investigation as a novel antifungal agent.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Mohammad H, Elghazawy NH, Eldesouky HE, Hegazy YA, Younis W, Avrimova L, Hazbun T, Arafa RK, Seleem MN
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference