Reference: Ho YH, et al. (2018) Decoupling Yeast Cell Division and Stress Defense Implicates mRNA Repression in Translational Reallocation during Stress. Curr Biol 28(16):2673-2680.e4

Reference Help

Abstract


Stress tolerance and rapid growth are often competing interests in cells. Upon severe environmental stress, many organisms activate defense systems concurrent with growth arrest. There has been debate as to whether aspects of the stress-activated transcriptome are regulated by stress or an indirect byproduct of reduced proliferation. For example, stressed Saccharomyces cerevisiae cells mount a common gene expression program called the environmental stress response (ESR) [1] comprised of ∼300 induced (iESR) transcripts involved in stress defense and ∼600 reduced (rESR) mRNAs encoding ribosomal proteins (RPs) and ribosome biogenesis factors (RiBi) important for division. Because ESR activation also correlates with reduced growth rate in nutrient-restricted chemostats and prolonged G1 in slow-growing mutants, an alternate proposal is that the ESR is simply a consequence of reduced division [2-5]. A major challenge is that past studies did not separate effects of division arrest and stress defense; thus, the true responsiveness of the ESR-and the purpose of stress-dependent rESR repression in particular-remains unclear. Here, we decoupled cell division from the stress response by following transcriptome, proteome, and polysome changes in arrested cells responding to acute stress. We show that the ESR cannot be explained by changes in growth rate or cell-cycle phase during stress acclimation. Instead, failure to repress rESR transcripts reduces polysome association of induced transcripts, delaying production of their proteins. Our results suggest that stressed cells alleviate competition for translation factors by removing mRNAs and ribosomes from the translating pool, directing translational capacity toward induced transcripts to accelerate protein production.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Ho YH, Shishkova E, Hose J, Coon JJ, Gasch AP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference