Reference: Bavli-Kertselli I, et al. (2015) Overexpression of eukaryotic initiation factor 5 rescues the translational defect of tpk1w in a manner that necessitates a novel phosphorylation site. FEBS J 282(3):504-20

Reference Help

Abstract


Cells respond to changes in their environment through mechanisms that often necessitate reprogramming of the translation machinery. The fastest and strongest of all tested responses is the translation inhibition observed following abrupt depletion of glucose from the media of yeast cells. The speed of the response suggests a post-translational modification of a key component of the translation machinery. This translation factor is as yet unknown. A cAMP-dependent protein kinase mutant yeast strain (tpk1(w)) that does not respond properly to glucose depletion and maintains translation was described previously. We hypothesized that the inability of tpk1(w) to arrest translation results from abnormal expression of key translation mediators. Genome-wide analysis of steady-state mRNA levels in tpk1(w) revealed underexpression of several candidates. Elevating the cellular levels of eukaryotic initiation factor (eIF) 5 by overexpression rescued the translational defect of tpk1(w). Restoring ribosomal dissociation by eIF5 necessitated an active GAP domain and multiple regions throughout this protein. Phosphoproteomics analysis of wild-type cells overexpressing eIF5 revealed increased phosphorylation in a novel site (Thr191) upon glucose depletion. Mutating this residue and introducing it into tpk1(w) abolished the ability of eIF5 to rescue the translational defect. Intriguingly, introducing this mutation into the wild-type strain did not hamper its translational response. We further show that Thr191 is phosphorylated in vitro by Casein Kinase II (CKII), and yeast cells with a mutated CKII have a reduced response to glucose depletion. These results implicate phosphorylation of eIF5 at Thr191 by CKII as one of the pathways for regulating translation upon glucose depletion.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bavli-Kertselli I, Melamed D, Bar-Ziv L, Volf H, Arava Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference