Reference: Lee JH, et al. (2019) The overexpression of cucumber (Cucumis sativus L.) genes that encode the branched-chain amino acid transferase modulate flowering time in Arabidopsis thaliana. Plant Cell Rep 38(1):25-35

Reference Help

Abstract


The overexpression of CsBCATs promotes flowering in Arabidopsis by regulating the expression of flowering time genes. The branched-chain amino acid transferases (BCATs) play an important role in the metabolism of branched-chain amino acids (BCAAs), such as isoleucine, leucine, and valine. They function in both the synthesis and the degradation of this class of amino acids. We identified and characterized the three BCAT genes in cucumber (Cucumis sativus L.). The tissue-specific expression profiling in cucumber plants revealed that CsBCAT2 and CsBCAT7 were highly expressed in the reproductive tissues, whereas CsBCAT3 expression was highly detected in the vegetative tissues. The subcellular localization patterns of three CsBCATs were observed in the mitochondria. The functional analyses of CsBCATs showed that CsBCAT2 and CsBCAT3 restored the growth of bat1Δ/bat2Δ double knockout yeast (Saccharomyces cerevisiae), and CsBCAT3 and CsBCAT7 with different substrate preferences acted in a reverse reaction. The transgenic approach demonstrated that the overexpression of the three CsBCATs resulted in early flowering phenotypes, which were associated with the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) in a manner in which they were dependent on GIGANTEA (GI)/CONSTANS (CO) and SHORT VEGETATIVE PHASE (SVP)/FLOWERING LOCUS C (FLC) modules. Our results, which are observed in conjunction, suggest that there is an interconnection between BCAT genes that function in BCAA metabolism and the flowering time in plants.

Reference Type
Journal Article
Authors
Lee JH, Kim YC, Jung Y, Han JH, Zhang C, Yun CW, Lee S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference