Reference: Guo X, et al. (2019) A genome-wide view of mutations in respiration-deficient mutants of Saccharomyces cerevisiae selected following carbon ion beam irradiation. Appl Microbiol Biotechnol 103(4):1851-1864

Reference Help

Abstract


Mitochondrial dysfunction in Saccharomyces cerevisiae was selected as a marker of ion penetration following carbon ion beam (CIB) irradiation. Respiration-deficient mutants were screened. Following confirmation of negligible spontaneous mutation, eight genetically stable S. cerevisiae respiration-deficient mutant strains and a control strain were resequenced with ~ 200-fold read depth. Strategies were established to identify and validate the particular mutations induced by CIB irradiation. In the nuclear genome, CIB irradiation mainly caused base substitutions and some small (< 100 bp) insertions/deletions (indels), which were widely distributed across the chromosomes. Although mitochondrial dysfunction was selected as a screening marker, variants in the nuclear genome were detected at a high frequency (10-7) relative to spontaneous mutations (10-9). The transition to transversion ratio for base substitutions was 0.746, which was less than that of spontaneous mutations. In the mitochondrial genome, there were very large deletions including substantial gene areas, resulting in extremely low read coverage. Meanwhile, every mutant possessed a distinctive mutation pattern, for both the nuclear and the mitochondrial genome. Nuclear genomes contained scanty mitochondrial respiration-related genes that were potentially affected by verified mutations, suggesting that variants in the mitochondrial genome may be the main drivers of respiratory deficiencies. Our study confirmed the previous finding that heavy ion beam (HIB) irradiation mainly induces substantial base substitutions and some small indels but also yielded some novel findings, in particular, novel structural variants in the mitochondrial genomes. These data will enhance the understanding of HIB-induced damage and mutations and aid in the HIB-based microbial mutation breeding.

Reference Type
Journal Article
Authors
Guo X, Zhang M, Gao Y, Cao G, Yang Y, Lu D, Li W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference