Reference: Koshland D and Tapia H (2019) Desiccation tolerance: an unusual window into stress biology. Mol Biol Cell 30(6):737-741

Reference Help

Abstract


Climate change has accentuated the importance of understanding how organisms respond to stresses imposed by changes to their environment, like water availability. Unusual organisms, called anhydrobiotes, can survive loss of almost all intracellular water. Desiccation tolerance of anhydrobiotes provides an unusual window to study the stresses and stress response imposed by water loss. Because of the myriad of stresses that could be induced by water loss, desiccation tolerance seemed likely to require many established stress effectors. The sugar trehalose and hydrophilins (small intrinsically disordered proteins) had also been proposed as stress effectors against desiccation because they were found in nearly all anhydrobiotes, and could mitigate desiccation-induced damage to model proteins and membranes in vitro. Here, we summarize in vivo studies of desiccation tolerance in worms, yeast, and tardigrades. These studies demonstrate the remarkable potency of trehalose and a subset of hydrophilins as the major stress effectors of desiccation tolerance. They act, at least in part, by limiting in vivo protein aggregation and loss of membrane integrity. The apparent specialization of individual hydrophilins for desiccation tolerance suggests that other hydrophilins may have distinct roles in mitigating additional cellular stresses, thereby defining a potentially new functionally diverse set of stress effectors.

Reference Type
Editorial | Research Support, N.I.H., Extramural
Authors
Koshland D, Tapia H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference