Reference: Lauer S and Gresham D (2019) An evolving view of copy number variants. Curr Genet 65(6):1287-1295

Reference Help

Abstract


Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.

Reference Type
Journal Article | Review
Authors
Lauer S, Gresham D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference