Reference: Zhao B, et al. (2019) An iteration method for identifying yeast essential proteins from heterogeneous network. BMC Bioinformatics 20(1):355

Reference Help

Abstract


Background: Essential proteins are distinctly important for an organism's survival and development and crucial to disease analysis and drug design as well. Large-scale protein-protein interaction (PPI) data sets exist in Saccharomyces cerevisiae, which provides us with a valuable opportunity to predict identify essential proteins from PPI networks. Many network topology-based computational methods have been designed to detect essential proteins. However, these methods are limited by the completeness of available PPI data. To break out of these restraints, some computational methods have been proposed by integrating PPI networks and multi-source biological data. Despite the progress in the research of multiple data fusion, it is still challenging to improve the prediction accuracy of the computational methods.

Results: In this paper, we design a novel iterative model for essential proteins prediction, named Randomly Walking in the Heterogeneous Network (RWHN). In RWHN, a weighted protein-protein interaction network and a domain-domain association network are constructed according to the original PPI network and the known protein-domain association network, firstly. And then, we establish a new heterogeneous matrix by combining the two constructed networks with the protein-domain association network. Based on the heterogeneous matrix, a transition probability matrix is established by normalized operation. Finally, an improved PageRank algorithm is adopted on the heterogeneous network for essential proteins prediction. In order to eliminate the influence of the false negative, information on orthologous proteins and the subcellular localization information of proteins are integrated to initialize the score vector of proteins. In RWHN, the topology, conservative and functional features of essential proteins are all taken into account in the prediction process. The experimental results show that RWHN obviously exceeds in predicting essential proteins ten other competing methods.

Conclusions: We demonstrated that integrating multi-source data into a heterogeneous network can preserve the complex relationship among multiple biological data and improve the prediction accuracy of essential proteins. RWHN, our proposed method, is effective for the prediction of essential proteins.

Reference Type
Journal Article
Authors
Zhao B, Zhao Y, Zhang X, Zhang Z, Zhang F, Wang L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference