Reference: Wang L, et al. (2019) Predicting Protein-Protein Interactions from Matrix-Based Protein Sequence Using Convolution Neural Network and Feature-Selective Rotation Forest. Sci Rep 9(1):9848

Reference Help

Abstract


Protein is an essential component of the living organism. The prediction of protein-protein interactions (PPIs) has important implications for understanding the behavioral processes of life, preventing diseases, and developing new drugs. Although the development of high-throughput technology makes it possible to identify PPIs in large-scale biological experiments, it restricts the extensive use of experimental methods due to the constraints of time, cost, false positive rate and other conditions. Therefore, there is an urgent need for computational methods as a supplement to experimental methods to predict PPIs rapidly and accurately. In this paper, we propose a novel approach, namely CNN-FSRF, for predicting PPIs based on protein sequence by combining deep learning Convolution Neural Network (CNN) with Feature-Selective Rotation Forest (FSRF). The proposed method firstly converts the protein sequence into the Position-Specific Scoring Matrix (PSSM) containing biological evolution information, then uses CNN to objectively and efficiently extracts the deeply hidden features of the protein, and finally removes the redundant noise information by FSRF and gives the accurate prediction results. When performed on the PPIs datasets Yeast and Helicobacter pylori, CNN-FSRF achieved a prediction accuracy of 97.75% and 88.96%. To further evaluate the prediction performance, we compared CNN-FSRF with SVM and other existing methods. In addition, we also verified the performance of CNN-FSRF on independent datasets. Excellent experimental results indicate that CNN-FSRF can be used as a useful complement to biological experiments to identify protein interactions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wang L, Wang HF, Liu SR, Yan X, Song KJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference