Reference: Chen CF, et al. (2019) Saccharomyces cerevisiae Centromere RNA Is Negatively Regulated by Cbf1 and Its Unscheduled Synthesis Impacts CenH3 Binding. Genetics 213(2):465-479

Reference Help

Abstract


Two common features of centromeres are their transcription into noncoding centromere RNAs (cen-RNAs) and their assembly into nucleosomes that contain a centromere-specific histone H3 (cenH3). Here, we show that Saccharomyces cerevisiae cen-RNA was present in low amounts in wild-type (WT) cells, and that its appearance was tightly cell cycle-regulated, appearing and disappearing in a narrow window in S phase after centromere replication. In cells lacking Cbf1, a centromere-binding protein, cen-RNA was 5-12 times more abundant throughout the cell cycle. In WT cells, cen-RNA appearance occurred at the same time as loss of Cbf1's centromere binding, arguing that the physical presence of Cbf1 inhibits cen-RNA production. Binding of the Pif1 DNA helicase, which happens in mid-late S phase, occurred at about the same time as Cbf1 loss from the centromere, suggesting that Pif1 may facilitate this loss by its known ability to displace proteins from DNA. Cen-RNAs were more abundant in rnh1Δ cells but only in mid-late S phase. However, fork pausing at centromeres was not elevated in rnh1Δ cells but rather was due to centromere-binding proteins, including Cbf1 Strains with increased cen-RNA lost centromere plasmids at elevated rates. In cbf1Δ cells, where both the levels and the cell cycle-regulated appearance of cen-RNA were disrupted, the timing and levels of cenH3 centromere binding were perturbed. Thus, cen-RNAs are highly regulated, and disruption of this regulation correlates with changes in centromere structure and function.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Chen CF, Pohl TJ, Chan A, Slocum JS, Zakian VA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference