Reference: Parapouli M, et al. (2019) Comparative transcriptional analysis of flavour-biosynthetic genes of a native Saccharomyces cerevisiae strain fermenting in its natural must environment, vs. a commercial strain and correlation of the genes' activities with the produced flavour compounds. J Biol Res (Thessalon) 26:5

Reference Help

Abstract


Background: During alcoholic fermentation, Saccharomyces cerevisiae synthesizes more than 400 different compounds with higher alcohols, acetate esters of higher alcohols and ethyl esters of medium-chain fatty acids being the most important products of its metabolism, determining the particular flavour profile of each wine. The concentration of the metabolites produced depends to a large extent on the strain used. The use of indigenous strains as starting cultures can lead to the production of wines with excellent organoleptic characteristics and distinct local character, superior in quality when compared to their commercial counterparts. However, the relationship of these wild-type genotypes, linked to specific terroirs, with the biosynthetic profiles of flavour metabolites is not completely clarified and understood. To this end, qRT-PCR was employed to examine, for the first time on the transcriptional level, the performance of an indigenous Saccharomyces cerevisiae strain (Z622) in its natural environment (Debina grape must). The expression of genes implicated in higher alcohols and esters formation was correlated with the concentrations of these compounds in the produced wine. Furthermore, by applying the same fermentation conditions, we examined the same parameters in a commercial strain (VL1) and compared its performance with the one of strain Z622.

Results: Strain Z622, exhibited lower concentrations of 2-methylbutanol, 3-methylbutanol and 2-phenyl ethanol, than VL1 correlating with the elevated expression levels of transaminase and decarboxylase genes. Furthermore, the significantly high induction of ADH3 throughout fermentation of Z622 probably explains the larger population numbers reached by Z622 and reflects the better adaptation of the strain to its natural environment. Regarding acetate ester biosynthesis, Z622 produced higher concentrations of total acetate esters, compared with VL1, a fact that is in full agreement with the elevated expression levels of both ATF1 and ATF2 in strain Z622.

Conclusions: This study provides evidence on the transcriptional level that indigenous yeast Z622 is better adapted to its natural environment able to produce wines with desirable characteristics, i.e. lower concentrations of higher alcohol and higher ester, verifying its potential as a valuable starter for the local wine-industry.

Reference Type
Journal Article
Authors
Parapouli M, Sfakianaki A, Monokrousos N, Perisynakis A, Hatziloukas E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference