Reference: Zhu X, et al. (2019) A comprehensive comparison and analysis of computational predictors for RNA N6-methyladenosine sites of Saccharomyces cerevisiae. Brief Funct Genomics 18(6):367-376

Reference Help

Abstract


N6-methyladenosine (m6A) modification, as one of the commonest post-transcription modifications in RNAs, has been reported to be highly related to many biological processes. Over the past decade, several tools for m6A sites prediction of Saccharomyces cerevisiae have been developed and are freely available online. However, the quality of predictions by these tools is difficult to quantify and compare. In this study, an independent dataset M6Atest6540 was compiled to systematically evaluate nine publicly available m6A prediction tools for S. cerevisiae. The experimental results indicate that RAM-ESVM achieved the best performance on M6Atest6540; however, most models performed substantially worse than their performances reported in the original papers. The benchmark dataset Met2614, which was used as the training dataset for the nine methods, were further analyzed by using a position bias index. The results demonstrated the significantly different bias of dataset Met2614 compared with the RNA segments around m6A sites recorded in RMBase. Moreover, newMet2614 was collected by randomly selecting RNA segments from non-redundant data recorded in RMBase, and three different kinds of features were extracted. The performances of the models built on Met2614 and newMet2614 with the features were compared, which shows the better generalization of models built on newMet2614. Our results also indicate the position-specific propensity-based features outperform other features, although they are also easily over-fitted on a biased dataset.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhu X, He J, Zhao S, Tao W, Xiong Y, Bi S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference