Reference: Zhang Z, et al. (2020) A novel method to predict essential proteins based on tensor and HITS algorithm. Hum Genomics 14(1):14

Reference Help

Abstract


Background: Essential proteins are an important part of the cell and closely related to the life activities of the cell. Hitherto, Protein-Protein Interaction (PPI) networks have been adopted by many computational methods to predict essential proteins. Most of the current approaches focus mainly on the topological structure of PPI networks. However, those methods relying solely on the PPI network have low detection accuracy for essential proteins. Therefore, it is necessary to integrate the PPI network with other biological information to identify essential proteins.

Results: In this paper, we proposed a novel random walk method for identifying essential proteins, called HEPT. A three-dimensional tensor is constructed first by combining the PPI network of Saccharomyces cerevisiae with multiple biological data such as gene ontology annotations and protein domains. Then, based on the newly constructed tensor, we extended the Hyperlink-Induced Topic Search (HITS) algorithm from a two-dimensional to a three-dimensional tensor model that can be utilized to infer essential proteins. Different from existing state-of-the-art methods, the importance of proteins and the types of interactions will both contribute to the essential protein prediction. To evaluate the performance of our newly proposed HEPT method, proteins are ranked in the descending order based on their ranking scores computed by our method and other competitive methods. After that, a certain number of the ranked proteins are selected as candidates for essential proteins. According to the list of known essential proteins, the number of true essential proteins is used to judge the performance of each method. Experimental results show that our method can achieve better prediction performance in comparison with other nine state-of-the-art methods in identifying essential proteins.

Conclusions: Through analysis and experimental results, it is obvious that HEPT can be used to effectively improve the prediction accuracy of essential proteins by the use of HITS algorithm and the combination of network topology with gene ontology annotations and protein domains, which provides a new insight into multi-data source fusion.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhang Z, Luo Y, Hu S, Li X, Wang L, Zhao B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference