Reference: Devia J, et al. (2020) Transcriptional Activity and Protein Levels of Horizontally Acquired Genes in Yeast Reveal Hallmarks of Adaptation to Fermentative Environments. Front Genet 11:293

Reference Help

Abstract


In the past decade, the sequencing of large cohorts of Saccharomyces cerevisiae strains has revealed a landscape of genomic regions acquired by Horizontal Gene Transfer (HGT). The genes acquired by HGT play important roles in yeast adaptation to the fermentation process, improving nitrogen and carbon source utilization. However, the functional characterization of these genes at the molecular level has been poorly attended. In this work, we carried out a systematic analysis of the promoter activity and protein level of 30 genes contained in three horizontally acquired regions commonly known as regions A, B, and C. In three strains (one for each region), we used the luciferase reporter gene and the mCherry fluorescent protein to quantify the transcriptional and translational activity of these genes, respectively. We assayed the strains generated in four different culture conditions; all showed low levels of transcriptional and translational activity across these environments. However, we observed an increase in protein levels under low nitrogen culture conditions, suggesting a possible role of the horizontally acquired genes in the adaptation to nitrogen-limited environments. Furthermore, since the strains carrying the luciferase reporter gene are null mutants for the horizontally acquired genes, we assayed growth parameters (latency time, growth rate, and efficiency) and the fermentation kinetics in this set of deletion strains. The results showed that single deletion of 20 horizontally acquired genes modified the growth parameters, whereas the deletion of five of them altered the maximal CO2 production rate (Vmax). Interestingly, we observed a correlation between growth parameters and Vmax for an ORF within region A, encoding an ortholog to a thiamine (vitamin B1) transporter whose deletion decreased the growth rate, growth efficiency, and CO2 production. Altogether, our results provided molecular and phenotypic evidence highlighting the importance of horizontally acquired genes in yeast adaptation to fermentative environments.

Reference Type
Journal Article
Authors
Devia J, Bastías C, Kessi-Pérez EI, Villarroel CA, De Chiara M, Cubillos FA, Liti G, Martínez C, Salinas F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference