Reference: Zhan XK, et al. (2020) Using Random Forest Model Combined With Gabor Feature to Predict Protein-Protein Interaction From Protein Sequence. Evol Bioinform Online 16:1176934320934498

Reference Help

Abstract


Protein-protein interactions (PPIs) play a crucial role in the life cycles of living cells. Thus, it is important to understand the underlying mechanisms of PPIs. Although many high-throughput technologies have generated large amounts of PPI data in different organisms, the experiments for detecting PPIs are still costly and time-consuming. Therefore, novel computational methods are urgently needed for predicting PPIs. For this reason, developing a new computational method for predicting PPIs is drawing more and more attention. In this study, we proposed a novel computational method based on texture feature of protein sequence for predicting PPIs. Especially, the Gabor feature is used to extract texture feature and protein evolutionary information from Position-Specific Scoring Matrix, which is generated by Position-Specific Iterated Basic Local Alignment Search Tool. Then, random forest-based classifiers are used to infer the protein interactions. When performed on PPI data sets of yeast, human, and Helicobacter pylori, we obtained good results with average accuracies of 92.10%, 97.03%, and 86.45%, respectively. To better evaluate the proposed method, we compared Gabor feature, Discrete Cosine Transform, and Local Phase Quantization. Our results show that the proposed method is both feasible and stable and the Gabor feature descriptor is reliable in extracting protein sequence information. Furthermore, additional experiments have been conducted to predict PPIs of other 4 species data sets. The promising results indicate that our proposed method is both powerful and robust.

Reference Type
Journal Article
Authors
Zhan XK, You ZH, Li LP, Li Y, Wang Z, Pan J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference