Reference: Wang L, et al. (2020) Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast. Biotechnol Biofuels 13(1):193

Reference Help

Abstract


Background: Stress tolerance is one of the important desired microbial traits for industrial bioprocesses, and global regulatory protein engineering is an efficient approach to improve strain tolerance. In our study, IrrE, a global regulatory protein from the prokaryotic organism Deinococcus radiodurans, was engineered to confer yeast improved tolerance to the inhibitors in lignocellulose hydrolysates or high temperatures.

Results: Three IrrE mutations were developed through directed evolution, and the expression of these mutants could improve the yeast fermentation rate by threefold or more in the presence of multiple inhibitors. Subsequently, the tolerance to multiple inhibitors of single-site mutants based on the mutations from the variants were then evaluated, and 11 mutants, including L65P, I103T, E119V, L160F, P162S, M169V, V204A, R244G, Base 824 Deletion, V299A, and A300V were identified to be critical for the improved representative inhibitors, i.e., furfural, acetic acid and phenol (FAP) tolerance. Further studies indicated that IrrE caused genome-wide transcriptional perturbation in yeast, and the mutant I24 led to the rapid growth of Saccharomyces cerevisiae by primarily regulating the transcription level of transcription activators/factors, protecting the intracellular environment and enhancing the antioxidant capacity under inhibitor environments, which reflected IrrE plasticity. Meanwhile, we observed that the expression of the wild-type or mutant IrrE could also protect Saccharomyces cerevisiae from the damage caused by thermal stress. The recombinant yeast strains were able to grow with glucose at 42 ℃.

Conclusions: IrrE from Deinococcus radiodurans can be engineered as a tolerance-enhancer for Saccharomyces cerevisiae. Systematic research on the regulatory model and mechanism of a prokaryotic global regulatory factor IrrE to increase yeast tolerance provided valuable insights for the improvements in microbial tolerance to complex industrial stress conditions.

Reference Type
Journal Article
Authors
Wang L, Wang X, He ZQ, Zhou SJ, Xu L, Tan XY, Xu T, Li BZ, Yuan YJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference