Reference: Wei Y, et al. (2021) Synthesis and characterization of porous CaCO3 microspheres templated by yeast cells and the application as pH value-sensitive anticancer drug carrier. Colloids Surf B Biointerfaces 199:111545

Reference Help

Abstract


Using yeast as organic template and PDDA/PSS with opposite charge as polyelectrolyte, CaCO3 was deposited on yeast cells by Layer-by-Layer self-assembly method, and then porous calcium carbonate hybrid microspheres (CaCO3-HMPs) were prepared by calcination. The CaCO3-HMPs were characterized by FT-IR, XRD, SEM and TG. It was found that the prepared CaCO3-HMPs were nearly spherical, with visible pores on the surface, small particle size uniformity (d = 3 μ m) and good dispersion. Doxorubicin hydrochloride (DOX) was used as the model drug to study drug loading and release properties of CaCO3-HMPs. Then, the drug loading, DOX release under different pH conditions, and the degradation of CaCO3-HMPs under different pH conditions were investigated. The drug release test results showed that the DOX-loaded microspheres released more drugs (99 %) at pH = 4.8 than pH = 7. It indicated that the CaCO3-HMPs were pH sensitive. The cytotoxicity of DOX-loaded microspheres was also studied. It was found that CaCO3-HMPs had good biocompatibility. In addition, compared with DOX group, cytotoxicity test results showed that the DOX-loaded microspheres had the same efficacy but sustained drug release for up to 120 h. Therefore, the CaCO3-HMP microspheres have good application prospects as anticancer drug carriers.

Reference Type
Journal Article
Authors
Wei Y, Sun R, Su H, Xu H, Zhang L, Huang D, Liang Z, Hu Y, Zhao L, Lian X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference