Reference: Pan Y, et al. (2021) Ehretiquinone from Onosma bracteatum Wall Exhibits Antiaging Effect on Yeasts and Mammals through Antioxidative Stress and Autophagy Induction. Oxid Med Cell Longev 2021:5469849

Reference Help

Abstract


The antiaging benzoquinone-type molecule ehretiquinone was isolated in a previous study as a leading compound from the herbal medicine Onosma bracteatum wall. This paper reports the antiaging effect and mechanism of ehretiquinone by using yeasts, mammal cells, and mice. Ehretiquinone extends not only the replicative lifespan but also the chronological lifespan of yeast and the yeast-like chronological lifespan of mammal cells. Moreover, ehretiquinone increases glutathione peroxidase, catalase, and superoxide dismutase activity and reduces reactive oxygen species and malondialdehyde (MDA) levels, contributing to the lifespan extension of the yeasts. Furthermore, ehretiquinone does not extend the replicative lifespan of Δsod1, Δsod2, Δuth1, Δskn7, Δgpx, Δcat, Δatg2, and Δatg32 mutants of yeast. Crucially, ehretiquinone induces autophagy in yeasts and mice, thereby providing significant evidence on the antiaging effects of the molecule in the mammalian level. Concomitantly, the silent information regulator 2 gene, which is known for its contributions in prolonging replicative lifespan, was confirmed to be involved in the chronological lifespan of yeasts and participates in the antiaging activity of ehretiquinone. These findings suggest that ehretiquinone shows an antiaging effect through antioxidative stress, autophagy, and histone deacetylase Sir2 regulation. Therefore, ehretiquinone is a promising molecule that could be developed as an antiaging drug or healthcare product.

Reference Type
Journal Article
Authors
Pan Y, Liu Y, Fujii R, Farooq U, Cheng L, Matsuura A, Qi J, Xiang L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference