Reference: Zhang ZX, et al. (2021) Developing GDi-CRISPR System for Multi-copy Integration in Saccharomyces cerevisiae. Appl Biochem Biotechnol 193(7):2379-2388

Reference Help

Abstract


In recent years, Saccharomyces cerevisiae has been widely used in the production of biofuels and value-added chemicals. To stably express the target products, it is necessary to integrate multiple target genes into the chromosome of S. cerevisiae. CRISPR multi-copy integration technology relying on delta sites has been developed, but it often requires the help of high-throughput screening or resistance markers, resulting in non-replicability and high cost. This study aims to develop a low-cost and easy-to-use multi-copy integration tool in S. cerevisiae. Firstly, twenty-one Cas proteins from different microorganisms were tested in S. cerevisiae to find the functional Cas proteins with optimal cleavage ability. Results showed that eight Cas proteins can complete gene editing. However, most of the transformants have low copy numbers, which may be caused by high cutting efficiency exceeding the repair rate. Therefore, the effect of donor translocation order was further investigated. Results showed that 4 copies were obtained by donor first translocation. Then, the gene drive delta site integration system by the CRISPR system (GDi-CRISPR) was developed by combining gene drive principle and CRISPR system. To be clear, the gRNA was put into donor fragments. Then, both of them were integrated into the genome, which can drive further cutting and repair due to increasing number of gRNA. Instead of high-throughput screening or resistance pressure, 6 copies were obtained in only 5-6 days using the GDi-CRISPR system. It is expected to further advance the development of S. cerevisiae multi-copy integration tools.

Reference Type
Journal Article
Authors
Zhang ZX, Wang YZ, Xu YS, Sun XM, Huang H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference