Reference: Wu D, et al. (2021) Expression, purification, crystallization and preliminary X-ray crystallographic studies of a mitochondrial membrane-associated protein Cbs2 from Saccharomyces cerevisiae. PeerJ 9:e10901

Reference Help

Abstract


Background: Mitochondria are unique organelles that are found in most eukaryotic cells. The main role of the mitochondria is to produce ATP. The nuclear genome encoded proteins Cbs1 and Cbs2 are located at the mitochondrial inner membrane and are reported to be essential for the translation of mitochondrial cytochrome b mRNA. Genetic studies show that Cbs2 protein recognizes the 5' untranslated leader sequence of mitochondrial cytochrome b mRNA. However, due to a lack of biochemical and structural information, this biological process remains unclear. To investigate the structural characteristics of how Saccharomyces cerevisiae (S. cerevisiae) Cbs2 tethers cytochrome b mRNA to the mitochondrial inner membrane, a preliminary X-ray crystallographic study was carried out and is reported here.

Methods: The target gene from S. cerevisiae was amplified by polymerase chain reaction. The PCR fragment was digested by the NdeI and XhoI restriction endonucleases and then inserted into expression vector p28. After sequencing, the plasmid was transformed into Escherichia coli C43 competent cells. The selenomethionine derivative Cbs2 protein was overexpressed using M9 medium based on a methionine-biosynthesis inhibition method. The protein was first purified to Ni2+-nitrilotriacetate affinity chromatography and then further purified by Ion exchange chromatography and Gel-filtration chromatography. The purified Se-Cbs2 protein was concentrated to 10 mg/mL. The crystallization trials were performed using the sitting-drop vapor diffusion method at 16 °C. The complete diffraction data was processed and scaled with the HKL2000 package and programs in the CCP4 package, respectively.

Results: Cbs2 from S. cerevisiae was cloned, prokaryotic expressed and purified. The analysis of the size exclusion chromatography showed that the Cbs2 protein peaked at a molecular weight of approximately 90 KDa. The crystal belonged to the space group C2, with unit-cell parameters of a = 255.11, b = 58.10, c = 76.37, and β = 95.35°. X-ray diffraction data was collected at a resolution of 2.7 Å. The Matthews coefficient and the solvent content were estimated to be 3.22 Å 3 Da-1 and 61.82%, respectively.

Conclusions: In the present study Cbs2 from S. cerevisiae was cloned, expressed, purified, and crystallized for structural studies. The molecular weight determination results indicated that the biological assembly of Cbs2 may be a dimer.The preliminary X-ray crystallographic studies indicated the presence of two Cbs2 molecules in the asymmetric unit. This study will provide an experimental basis for exploring how Cbs2 protein mediates cytochrome b synthesis.

Reference Type
Journal Article
Authors
Wu D, Zhu G, Zhang Y, Wu Y, Zhang C, Shi J, Zhu X, Yuan X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference