Reference: Qin W, et al. (2021) Determination of elemental distribution and evaluation of elemental concentration in single Saccharomyces cerevisiae cells using single cell-inductively coupled plasma mass spectrometry. Metallomics 13(6)

Reference Help

Abstract


Single-cell analysis using inductively coupled plasma mass spectrometry (SC-ICP-MS) is a method to obtain qualitative and quantitative information of the elemental content and distribution of single cells. Six intrinsic target elements were analyzed in yeast cells at different cell growth phases cultured in medium with different phosphorus concentrations (0, 7, 14 mM) to study its effect on cell growth and composition. SC-ICP-MS results were compared with those obtained by the acid digestion and the average ratio was 0.81. The limits of detection of this method were 0.08, 2.54, 12.5, 0.02, 0.02, and 0.08 fg cell-1 for Mg, P, K, Mn, Cu, and Zn, respectively. During the exponential growth phase, the cells exhibited higher elemental contents, wider distribution for most elements, and larger cell size in comparison to the stationary growth phase. Phosphorus-free conditions reduced the average P content in single cells of stationary growth phase from 650 to 80 fg. Phosphorus deficiency led to decreasing intracellular concentrations not only of P but also of K and Cu, and to increasing Zn concentration after 48 h. Mg maintained its concentration at ∼0.11 fg µm-3 and did not change significantly under the three investigated conditions after 48 h. Accordingly, Mg content was successfully used to estimate the intracellular concentration of other intrinsic elements in single yeast cells. SC-ICP-MS is suited to determine target elements in single yeast cells, and allows the study of heterogeneity of cell composition and effects of stressors on the elemental content, distribution, and concentrations of intrinsic elements.

Reference Type
Evaluation Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Qin W, Stärk HJ, Müller S, Reemtsma T, Wagner S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference