Reference: Li Y, et al. (2021) Robust and accurate prediction of protein-protein interactions by exploiting evolutionary information. Sci Rep 11(1):16910

Reference Help

Abstract


Various biochemical functions of organisms are performed by protein-protein interactions (PPIs). Therefore, recognition of protein-protein interactions is very important for understanding most life activities, such as DNA replication and transcription, protein synthesis and secretion, signal transduction and metabolism. Although high-throughput technology makes it possible to generate large-scale PPIs data, it requires expensive cost of both time and labor, and leave a risk of high false positive rate. In order to formulate a more ingenious solution, biology community is looking for computational methods to quickly and efficiently discover massive protein interaction data. In this paper, we propose a computational method for predicting PPIs based on a fresh idea of combining orthogonal locality preserving projections (OLPP) and rotation forest (RoF) models, using protein sequence information. Specifically, the protein sequence is first converted into position-specific scoring matrices (PSSMs) containing protein evolutionary information by using the Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then we characterize a protein as a fixed length feature vector by applying OLPP to PSSMs. Finally, we train an RoF classifier for the purpose of identifying non-interacting and interacting protein pairs. The proposed method yielded a significantly better results than existing methods, with 90.07% and 96.09% prediction accuracy on Yeast and Human datasets. Our experiment show the proposed method can serve as a useful tool to accelerate the process of solving key problems in proteomics.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Li Y, Wang Z, Li LP, You ZH, Huang WZ, Zhan XK, Wang YB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference