Reference: Zhang W, et al. (2021) Isobutanol tolerance and production of Saccharomyces cerevisiae can be improved by engineering its TATA-binding protein Spt15. Lett Appl Microbiol 73(6):694-707

Reference Help

Abstract


Low isobutanol tolerance of Saccharomyces cerevisiae limits its application in isobutanol fermentation. Here, we used global transcription machinery engineering to screen mutants with higher isobutanol tolerance and elevated isobutanol titres. TATA-binding protein Spt15 was used as the target of global transcription machinery engineering for improvement of such complex phenotypes. A random mutagenesis library of S. cerevisiae TATA-binding protein Spt15 was constructed and subjected to screening under isobutanol stress. A mutant strain (denoted as spt15-3) with improved isobutanol tolerance was identified. There were three mutations of Spt15 in strain spt15-3, including deletion of A at position -132 nt upstream of initiation codon, insertion of G at position -65 nt upstream of initiation codon and a synonymous mutation at position 315 nt (T → C) downstream of initiation codon. We then metabolically engineered isobutanol synthesis in strains harbouring plasmids YCplac22 containing these Spt15 mutations. Delta integration was used to overexpress ILV3 gene, and 2μ plasmids carrying PGK1p-ILV2 and PGK1p-ARO10 were used to overexpress ILV2 and ARO10 genes. After 24-h micro-aerobic fermentation, Engi-3 produced 0·556 g l-1 isobutanol, which was 404% and 25·3% greater than isobutanol produced by control Engi-1 and engineered Engi-2, respectively. After 28 h, Engi-4 produced 0·459 g l-1 isobutanol, which was 315% and 3·2% greater than isobutanol produced Engi-1 and Engi-2, respectively. RNA-Seq-based transcriptome analysis shows that mutations of Spt15 in strain spt15-3 increased the expression of SPT15. Meanwhile, compared with strain Engi-3, the spt15-3 mutation downregulated the expression of genes involved in the TCA cycle and glyoxylic acid cycle, but increased the expression of genes related to cell stability. This work demonstrates that isobutanol tolerance and production of S. cerevisiae can be improved by engineering its TATA-binding protein Spt15. This study clarified the molecular mechanisms regulating isobutanol production and tolerance in S. cerevisiae.

Reference Type
Journal Article
Authors
Zhang W, Shao W, Zhang A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference