Reference: Yang F, et al. (2022) Oligosaccharides in straw hydrolysate could improve the production of single-cell protein with Saccharomyces cerevisiae. J Sci Food Agric 102(7):2928-2936

Reference Help

Abstract


Background: Using agricultural wastes to produce single-cell proteins (SCP) can reduce production costs effectively. The aims of this study were to investigate the effects of enzyme loading on the components of rice straw (RS) hydrolysate and their effects on the growth of yeast.

Results: At the same glucose concentration, the dry weight of cells produced in the hydrolysate was 2.89 times higher than that in 2 g L-1 yeast extract (YE) medium, indicating that the hydrolysate was a suitable substrate for yeast growth. Ethanol precipitation followed by analysis showed that there were many oligosaccharides in the hydrolysate. The amount of cellulase had an important effect on the production of monosaccharides but had a smaller effect on the amounts and compositions of oligosaccharides. Adding oligosaccharides to the medium had no effect on ethanol production, but it promoted yeast growth and increased SCP production effectively. The results indicate that oligosaccharides were an important growth factor for yeast in the hydrolysate. Compared with YE medium, the cost of the medium with the hydrolysate was reduced by 68.47% when the same dry cell weight was obtained.

Conclusion: Oligosaccharides in the hydrolysate can improve SCP production with low nutrient cost. This finding could reduce the amounts of cellulase required during saccharification and nutrients during culture, providing a new low-cost method for SCP production. © 2021 Society of Chemical Industry.

Reference Type
Journal Article
Authors
Yang F, Jin Z, Nawaz M, Xiao Y, Jiang Y, Hu J, Li J, Gao MT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference