Reference: Gomes F, et al. (2021) Dissecting the molecular mechanisms of mitochondrial import and maturation of peroxiredoxins from yeast and mammalian cells. Biophys Rev 13(6):983-994

Reference Help

Abstract


Peroxiredoxins (Prxs) are cysteine-based peroxidases that play a central role in keeping the H2O2 at physiological levels. Eukaryotic cells express different Prxs isoforms, which differ in their subcellular locations and substrate specificities. Mitochondrial Prxs are synthesized in the cytosol as precursor proteins containing N-terminal cleavable presequences that act as mitochondrial targeting signals. Due to the fact that presequence controls the import of the vast majority of mitochondrial matrix proteins, the mitochondrial Prxs were initially predicted to be localized exclusively in the matrix. However, recent studies showed that mitochondrial Prxs are also targeted to the intermembrane space by mechanisms that remain poorly understood. While in yeast the IMP complex can translocate Prx1 to the intermembrane space, the maturation of yeast Prx1 and mammalian Prdx3 and Prdx5 in the matrix has been associated with sequential cleavages of the presequence by MPP and Oct1/MIP proteases. In this review, we describe the state of the art of the molecular mechanisms that control the mitochondrial import and maturation of Prxs of yeast and human cells. Once mitochondria are considered the major intracellular source of H2O2, understanding the mitochondrial Prx biogenesis pathways is essential to increase our knowledge about the H2O2-dependent cellular signaling, which is relevant to the pathophysiology of some human diseases.

Reference Type
Journal Article | Review
Authors
Gomes F, Turano H, Ramos A, de Barros MH, Haddad LA, Netto LES
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference