Reference: Murakami K and Yoshino M (2022) Prooxidant activity of aminophenol compounds: copper-dependent generation of reactive oxygen species. Biometals 35(2):329-334

Reference Help

Abstract


Prooxidant properties of aminophenol, the constituent of acetaminophen and mesalamine, were examined. Aminophenol compounds/copper-dependent formation of reactive oxygen species was analyzed by the inactivation of aconitase, the most sensitive enzyme to oxidative stress in permeabilized yeast cells. Aminophenol compounds of 2 (ortho)- and 4 (para)- substituents, but not 3 (meta)-isomer produced reactive oxygen species in the presence of copper (cupric) ion or iron. The inactivation required sodium azide the inhibitor of catalase, suggesting that the superoxide radical produced from the 2- and 4-aminophenol in the presence of copper is responsible for the inactivation of aconitase. Aminophenols of 2- and 4-substituents showed a potent reducing activity of copper (cupric) ion, and further potent reactivity with DPPH radical, but 3-aminophenol showed only a little reactivity. Reduced copper ion can generate superoxide radical with the production of oxidized metal. Aminophenols can reduce the copper ion, and further stimulate the continuous production of reactive oxygen species. Cytotoxic effect of acetaminophen, the N-acetylated-p-aminophenol and mesalamine, the 4-aminophenol derivatives may be accounted for by the prooxidant properties of their constituents, aminophenol.

Reference Type
Journal Article
Authors
Murakami K, Yoshino M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference