Reference: Wang L, et al. (2022) Protein kinases Elm1 and Sak1 of Saccharomyces cerevisiae exerted different functions under high-glucose and heat shock stresses. Appl Microbiol Biotechnol 106(5-6):2029-2042

Reference Help

Abstract


Phosphorylation catalyzed by protein kinases is the most common and important regulatory pathway in the adaptive physiological responses to the changes in nutrition and environment of yeast. This study focused on the functions of Elm1, Sak1, and Tos3, which are three upstream protein kinases of Snf1 in Saccharomyces cerevisiae, in response to high-glucose and heat shock stresses. Results suggested that changing the gene dosage of ELM1/SAK1/TOS3 had different effects under high-glucose and heat shock stresses. ELM1 and SAK1 overexpressions could enhance the tolerance of S. cerevisiae to high-glucose and heat shock stresses, respectively. Nevertheless, the overexpression of TOS3 decreased the tolerance to high-glucose stress, and a native level of Tos3 was important for the normal adaptation to heat shock condition. The overexpression of ELM1 increased the accumulation of trehalose and ergosterol and altered the composition of fatty acids with altered gene expressions involved in the metabolism of three metabolites. Enhanced resistance to heat shock stress in SAK1 overexpression might be related to the enhanced accumulation of trehalose and ergosterol and upregulated transcription of genes related to the metabolism of trehalose and ergosterol. Furthermore, Elm1 might regulate the metabolism of trehalose, ergosterol, and fatty acids in a Snf1-independent form under high-glucose stress. A Snf1-independent pathway might be involved in the regulation of trehalose metabolism by Sak1 under heat shock condition. However, Sak1 and Snf1 may have an indirect relationship in the regulation of ergosterol synthesis. KEY POINTS: • Altering the gene dosage of ELM1/SAK1/TOS3 had different effects on stress responses • Elm1 regulated high-glucose response in a Snf1-independent manner • Sak1 and Snf1 had an indirect relationship in the regulation of heat shock response.

Reference Type
Journal Article
Authors
Wang L, Yang X, Jiang HY, Song ZM, Lin X, Hu XP, Li CF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference