Reference: Ge Z, et al. (2022) Effects of Lactobacillus plantarum and Saccharomyces cerevisiae co-fermentation on the structure and flavor of wheat noodles. J Sci Food Agric 102(11):4697-4706

Reference Help

Abstract


Background: Although traditional fermented noodles possess high eating quality, it is difficult to realize large-scale industrialization as a result of the complexity of spontaneous fermentation. In present study, commercial Lactobacillus plantarum and Saccharomyces cerevisiae were applied in the preparation of fermented noodles.

Results: The changes in the structural characteristics and aroma components of noodles after fermentation were investigated via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), low-field magenetic resonance imaging, electronic nose, and simultaneous distillation and extraction/gas chromatography-mass spectrometry (GC-MS) analysis. SEM images revealed that co-fermentation of the L. plantarum and S. cerevisiae for 10-40 min enhanced the continuity of the gluten network and promoted the formation of pores. FTIR spectra analysis showed that the co-fermentation increased significantly (P < 0.05) the proportion of α-helices of noodles gluten protein, enhancing the orderliness of the molecular structure of protein. After fermentation for 10-40 min, the signal density of hydrogen protons increased from the surface to the core, indicating that the water in the noodles migrated inward during a short fermentation process. The results of multivariate statistical analysis demonstrated that the main aroma differences between unfermented and fermented noodles were mainly in hydrocarbons, aromatic compounds and inorganic sulfides. GC-MS analysis indicated that the main volatile compounds detected were 2, 4-di-tert-butylphenol, bis (2-ethylhexyl) adipate, butyl acetate, dibutyl phthalate, dioctyl terephthalate, bis (2-ethylhexyl) phthalate, pentanol and 2-pentylfuran, etc. CONCLUSION: Co-fermentation with L. plantarum and S. cerevisiae improved the structure of gluten network and imparted more desirable volatile components to wheat noodles. © 2022 Society of Chemical Industry.

Reference Type
Journal Article
Authors
Ge Z, Wang W, Xu M, Gao S, Zhao Y, Wei X, Zhao G, Zong W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference