Reference: Kahar P, et al. (2022) The flocculant Saccharomyces cerevisiae strain gains robustness via alteration of the cell wall hydrophobicity. Metab Eng 72:82-96

Reference Help

Abstract


When lignocellulosic biomass is utilized as a fermentative substrate to produce biochemicals, the existence of a yeast strain resistant to inhibitory chemical compounds (ICCs) released from the biomass becomes critical. To achieve the purpose, in this study, Saccharomyces yeast strains from a NBRC yeast culture collection were used for exploration and evaluated in two different media containing ICCs that mimic one another but resemble the hydrolysate of real biomass. Among them, S. cerevisiae F118 strain shows robustness upon the fermentation with unique flocculation trait that was strongly responsive to ICC stress. When this strain was cultured in the presence of ICCs, its cell wall hydrophobicity increased dramatically, and reduced significantly when the ICCs were depleted, demonstrating that cell-surface hydrophobicity can also act as an adaptive response to the ICCs. Cells from the strain with the highest cell-wall hydrophobicity displayed progressively stronger flocculation, indicating that the F118 strain is having unique robustness under ICC stress. Gene expression perturbation analysis revealed that mot3 gene encoding regulatory Mot3p from the F118 strain was expressed in response to the concentration of ICCs. This gene was found to control expression of ygp1 gene that encoding Ygp1p, one of cell wall proteins. Deep sequencing analysis revealed that the Mot3p of the F118 strain features a unique insertion and deletion of nucleotides that encode glutamine or asparagine residues, particularly in N-terminal domain, as determined by comparison to the Mot3p sequence from the S288c strain, which was employed as a control strain. Furthermore, the cell wall hydrophobicity of the S288c strain was greatly enhanced and became ICC-responsive after gene swapping with the mot3 gene from the F118 strain. The gene-swapped S288c strain fermented 6-fold faster than the wild-type strain, producing 14.5 g/L of ethanol from 30 g/L of glucose consumed within 24 h in a medium containing the ICCs. These such modifications to Mot3p in unique locations in its sequence have a potential to change the expression of a gene involved in cell wall hydrophobicity and boosted the flocculation response to ICC stress, allowing for the acquisition of extraordinary robustness.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kahar P, Itomi A, Tsuboi H, Ishizaki M, Yasuda M, Kihira C, Otsuka H, Azmi NB, Matsumoto H, Ogino C, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference