Reference: Xie D, et al. (2022) Effect of glucose levels on carbon flow rate, antioxidant status, and enzyme activity of yeast during fermentation. J Sci Food Agric 102(12):5333-5347

Reference Help

Abstract


Background: The physiological metabolism of yeast has a significant impact on the quality of fermentation products. The present study aimed to investigate yeast metabolism in response to a changing glucose content environment, especially in fermentation products, as well as the change of carbon flow rate, antioxidant status, and yeast enzyme activity.

Results: Yeast in a 0 g L-1 glucose level was subjected to carbon starvation stress, cell growth retardation and cell proliferation was significantly inadequate; in the logarithmic growth stage of yeast, at a 30 g L-1 glucose level, the carbon source mainly flowed to tricarboxylic acid cycle and pentose phosphate metabolism, cell division, proliferation, and increased cell growth. In later logarithmic growth period and stable period, carbon flowed into glycerol and trehalose metabolism, to cope with the environmental stress; yeast in 60 and 150 g L-1 glucose levels faced high glucose stress at the beginning, the content of reactive oxygen increased, malondialdehyde content increased, cell damage was reduced through the regulation of superoxide dismutase and catalase enzyme activities, and most of the carbon flowed into the metabolic pathway of ethanol, glycerol, and trehalose to cope with high glucose stress, the pentose phosphate pathway showed a large late influx, and NADPH also started to increase rapidly after 24 h.

Conclusion: Yeast was stressed in a high-sugar environment and ensured the activity of yeast by preferentially increasing the metabolic intensity of trehalose, glycerol, and glycolytic metabolism, weakening tricarboxylic acid metabolism, and first weakening and then increasing pentose phosphate metabolism. © 2022 Society of Chemical Industry.

Reference Type
Journal Article
Authors
Xie D, Sun Y, Lei Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference