Reference: Hirota S, et al. (2022) Novel breeding method, matα2-PBT, to construct isogenic series of polyploid strains of Saccharomyces cerevisiae. J Biosci Bioeng 133(6):515-523

Reference Help

Abstract


How ploidy is determined in organisms is an important issue in bioscience. Polyploidy is believed to be relevant to useful traits of domesticated plants and microorganisms. As such, polyploidy is central to many applications in biotechnology. However, studies of polyploidy are poorly advanced because no methodologies to construct desired polyploid have been developed for any organism. Herein we describe the development of a novel breeding technology, matα2-PBT, to generate polyploid strains of Saccharomyces cerevisiae. S. cerevisiae has two mating types, a and α, determined by MATa and MATα gene each of which consists of a1 and a2 and α1 and α2 cistrons. This novel technology exploits an interesting feature of a specific mutation, matα2-102, in the MATα2 gene. Unlike the MATα wild-type strain, which gives a non-mating phenotype when mated with MATa cells, the matα2-102 strain confers an α mating-type to a-type strains when mated with a-type strains. We constructed plasmid with the cloned matα2-102 mutant gene. An a-type cells harboring this plasmid displayed an α mating-type and mated with a-type cells. Because the resultant hybrid displays an α mating-type, it can mate again with a-type cells. By repeating this procedure, we have constructed an isogenic series of haploid to tetraploid of S. cerevisiae. Although whether even higher polyploid than tetraploid can be constructed by using this technology remains to be determined in the future, we believe that it became possible for the first time with matα2-PBT method to investigate whether higher polyploid than tetraploid can be constructed.

Reference Type
Journal Article
Authors
Hirota S, Nakayama Y, Itokazu H, Ekino K, Nishizawa M, Harashima S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference