Reference: Somashekara SC and Muniyappa K (2022) Dual targeting of Saccharomyces cerevisiae Pso2 to mitochondria and the nucleus, and its functional relevance in the repair of DNA interstrand crosslinks. G3 (Bethesda) 12(6)

Reference Help

Abstract


Repair of DNA interstrand crosslinks involves a functional interplay among different DNA surveillance and repair pathways. Previous work has shown that interstrand crosslink-inducing agents cause damage to Saccharomyces cerevisiae nuclear and mitochondrial DNA, and its pso2/snm1 mutants exhibit a petite phenotype followed by loss of mitochondrial DNA integrity and copy number. Complex as it is, the cause and underlying molecular mechanisms remains elusive. Here, by combining a wide range of approaches with in vitro and in vivo analyses, we interrogated the subcellular localization and function of Pso2. We found evidence that the nuclear-encoded Pso2 contains 1 mitochondrial targeting sequence and 2 nuclear localization signals (NLS1 and NLS2), although NLS1 resides within the mitochondrial targeting sequence. Further analysis revealed that Pso2 is a dual-localized interstrand crosslink repair protein; it can be imported into both nucleus and mitochondria and that genotoxic agents enhance its abundance in the latter. While mitochondrial targeting sequence is essential for mitochondrial Pso2 import, either NLS1 or NLS2 is sufficient for its nuclear import; this implies that the 2 nuclear localization signal motifs are functionally redundant. Ablation of mitochondrial targeting sequence abrogated mitochondrial Pso2 import, and concomitantly, raised its levels in the nucleus. Strikingly, mutational disruption of both nuclear localization signal motifs blocked the nuclear Pso2 import; at the same time, they enhanced its translocation into the mitochondria, consistent with the notion that the relationship between mitochondrial targeting sequence and nuclear localization signal motifs is competitive. However, the nuclease activity of import-deficient species of Pso2 was not impaired. The potential relevance of dual targeting of Pso2 into 2 DNA-bearing organelles is discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Somashekara SC, Muniyappa K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference