Reference: Alhaj Sulaiman A, et al. (2022) The histone H2B Arg95 residue links the pheromone response pathway to rapamycin-induced G1 arrest in yeast. Sci Rep 12(1):10023

Reference Help

Abstract


Rapamycin is an immunosuppressant used for treating many types of diseases such as kidney carcinomas. In yeast, rapamycin inhibits the TORC1 kinase signaling pathway causing rapid alteration in gene expression and ultimately cell cycle arrest in G1 through mechanisms that are not fully understood. Herein, we screened a histone mutant collection and report that one of the mutants, H2B R95A, is strikingly resistant to rapamycin due to a defective cell cycle arrest. We show that the H2B R95A causes defects in the expression of a subset of genes of the pheromone pathway required for α factor-induced G1 arrest. The expression of the STE5 gene and its encoded scaffold protein Ste5, required for the sequential activation of the MAPKs of the pheromone pathway, is greatly reduced in the H2B R95A mutant. Similar to the H2B R95A mutant, cells devoid of Ste5 are also resistant to rapamycin. Rapamycin-induced G1 arrest does not involve detectable phosphorylation of the MAPKs, Kss1, and Fus3, as reported for α factor-induced G1 arrest. However, we observed a sharp induction of the G1 cyclin Cln2 (~ 3- to 4-fold) in the ste5Δ mutant within 30 min of exposure to rapamycin. Our data provide a new insight whereby rapamycin signaling via the Torc1 kinase may exploit the pheromone pathway to arrest cells in the G1 phase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Alhaj Sulaiman A, Ali R, Aouida M, Moovarkumudalvan B, Ramotar D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference