Reference: Haslem L, et al. (2022) Overproduction of Membrane-Associated, and Integrated, Proteins Using Saccharomyces cerevisiae. Methods Mol Biol 2507:111-141

Reference Help

Abstract


Structural and functional eukaryotic membrane protein research continues to grow at an increasing rate, placing greater significance on leveraging productive protein expression pipelines to feed downstream studies. Bacterial expression systems (e.g., E. coli) are often the preferred system due to their simple growth conditions, relative simplicity in experimental workflow, low overall cost per liter of cell growth, and ease of genetic manipulation. However, overproduction success of eukaryotic membrane proteins in bacterial systems is hindered by the limited native processing ability of bacterial systems for important protein folding interactions (e.g., disulfide bonds), post-translational modifications (e.g., glycosylation), and inherent disadvantages in protein trafficking and folding machinery compared to other expression systems.In contrast, Saccharomyces cerevisiae expression systems combine positive benefits of simpler bacterial systems with those of more complex eukaryotic systems (e.g., mammalian cells). Benefits include inexpensive growth, robust DNA repair and recombination machinery, amenability to high density growths in bioreactors, efficient transformation, and robust post-translational modification machinery. These characteristics make S. cerevisiae a viable first-alternative when bacterial overproduction is insufficient. Thus, this chapter provides a framework, using methods that have proven successful in prior efforts, for overproducing membrane anchored or membrane integrated proteins in S. cerevisiae. The framework is designed to improve yields for all levels of overexpression expertise, providing optimization insights for the variety of processes involved in heterologous protein expression.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Haslem L, Brown M, Zhang XA, Hays JM, Hays FA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference