Reference: Wongkittichote P, et al. (2022) Functional analysis of missense DARS2 variants in siblings with leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Mol Genet Metab 136(4):260-267

Reference Help

Abstract


Biallelic pathogenic variants in the nuclear gene DARS2 (MIM# 610956), encoding the mitochondrial enzyme aspartyl-tRNA synthetase (MT-ASPRS) cause leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation (LBSL) (MIM# 611105), a neurometabolic disorder characterized by progressive ataxia, spasticity, developmental arrest or regression and characteristic brain MRI findings. Most patients exhibit a slowly progressive disease course with motor deterirartion that begins in childhood or adolescence, but can also occasionaly occur in adulthood. More severe LBSL presentations with atypical brain MRI findings have been recently described. Baker's yeast orthologue of DARS2, MSD1, is required for growth on oxidative carbon sources. A yeast with MSD1 knockout (msd1Δ) demonstrated a complete lack of oxidative growth which could be rescued by wild-type MSD1 but not MSD1 with pathogenic variants. Here we reported two siblings who exhibited developmental regression and ataxia with different age of onset and phenotypic severity. Exome sequencing revealed 2 compound heterozygous missense variants in DARS2: c.473A>T (p.Glu158Val) and c.829G>A (p.Glu277Lys); this variant combination has not been previously reported. The msd1Δ yeast transformed with plasmids expressing p.Glu259Lys, equivalent to human p.Glu277Lys, showed complete loss of oxidative growth and oxygen consumption, while the strain carrying p.Gln137Val, equivalent to human p.Glu158Val, showed a significant reduction of oxidative growth, but a residual ability to grow was retained. Structural analysis indicated that p.Glu158Val may interfere with protein binding of tRNAAsp, while p.Glu277Lys may impact both homodimerization and catalysis of MT-ASPRS. Our data illustrate the utility of yeast model and in silico analysis to determine pathogenicity of DARS2 variants, expand the genotypic spectrum and suggest intrafamilial variability in LBSL.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Wongkittichote P, Magistrati M, Shimony JS, Smyser CD, Fatemi SA, Fine AS, Bellacchio E, Dallabona C, Shinawi M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference