Reference: Choi J, et al. (2022) Repair of mismatched templates during Rad51-dependent Break-Induced Replication. PLoS Genet 18(9):e1010056

Reference Help

Abstract


Using budding yeast, we have studied Rad51-dependent break-induced replication (BIR), where the invading 3' end of a site-specific double-strand break (DSB) and a donor template share 108 bp of homology that can be easily altered. BIR still occurs about 10% as often when every 6th base is mismatched as with a perfectly matched donor. Here we explore the tolerance of mismatches in more detail, by examining donor templates that each carry 10 mismatches, each with different spatial arrangements. Although 2 of the 6 arrangements we tested were nearly as efficient as the evenly-spaced reference, 4 were significantly less efficient. A donor with all 10 mismatches clustered at the 3' invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5' end. Our data suggest that the efficiency of strand invasion is principally dictated by thermodynamic considerations, i.e., by the total number of base pairs that can be formed; but mismatch position-specific effects are also important. We also addressed an apparent difference between in vitro and in vivo strand exchange assays, where in vitro studies had suggested that at a single contiguous stretch of 8 consecutive bases was needed to be paired for stable strand pairing, while in vivo assays using 108-bp substrates found significant recombination even when every 6th base was mismatched. Now, using substrates of either 90 or 108 nt-the latter being the size of the in vivo templates-we find that in vitro D-loop results are very similar to the in vivo results. However, there are still notable differences between in vivo and in vitro assays that are especially evident with unevenly-distributed mismatches. Mismatches in the donor template are incorporated into the BIR product in a strongly polar fashion up to ~40 nucleotides from the 3' end. Mismatch incorporation depends on the 3'→ 5' proofreading exonuclease activity of DNA polymerase δ, with little contribution from Msh2/Mlh1 mismatch repair proteins, or from Rad1-Rad10 flap nuclease or the Mph1 helicase. Surprisingly, the probability of a mismatch 27 nt from the 3' end being replaced by donor sequence was the same whether the preceding 26 nucleotides were mismatched every 6th base or fully homologous. These data suggest that DNA polymerase δ "chews back" the 3' end of the invading strand without any mismatch-dependent cues from the strand invasion structure. However, there appears to be an alternative way to incorporate a mismatch at the first base at the 3' end of the donor.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Choi J, Kong M, Gallagher DN, Li K, Bronk G, Cao Y, Greene EC, Haber JE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference