Reference: Chen Y, et al. (2022) Three-Mediator Enhanced Collisions on an Ultramicroelectrode for Selective Identification of Single Saccharomyces cerevisiae. Anal Chem 94(37):12630-12637

Reference Help

Abstract


Selective detection of colliding entities, especially cells and microbes, is of great challenge in single-entity electrochemistry. Herein, based on the different cellular electron transport pathways between microbes and mediators, we report a three-mediator system [K3Fe(CN)6, K4Fe(CN)6, and menadione] to achieve redox activity analysis and selective identification of single Saccharomyces cerevisiae without the usage of antibodies. K4Fe(CN)6 in the three-mediator system will oxidize near the electrode surface and increase the local concentration of K3Fe(CN)6, which will promote the redox reaction of S. cerevisiae. The hydrophobic mediator─menadione─can selectively penetrate through the S. cerevisiae membrane and get access to its intracellular redox center and can further react with K3Fe(CN)6 in the bulk solution. In contrast, the mediator can only get access to the bacterial membranes of Escherichia coli and Staphylococcus aureus, which results in different electrochemical collision signals between the above microbes. In the three-mediator system, upward step-like collision signals were observed in S. cerevisiae suspension, which are related to their microbial redox activity. In comparison, E. coli or S. aureus only generated downward current steps because the blockage effect of mediator diffusion suppresses their redox activities. When S. cerevisiae co-existed with E. coli or S. aureus, transients generated by both blockage and redox activity were observed. The approach enables us to trace the collision behaviors of different microbes and distinguish their simultaneous collisions, which is the foundation for further application of electrochemical collision technique in the specific identification of single biological entities.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chen Y, Liu Y, Wang D, Gao G, Zhi J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference