Reference: Lv M, et al. (2022) Effect of WenXin KeLi on Improvement of Arrhythmia after Myocardial Infarction by Intervening PI3K-AKT-mTOR Autophagy Pathway. Evid Based Complement Alternat Med 2022:2022970

Reference Help

Abstract


Background: Myocardial infarction (MI) is an acute and serious cardiovascular disease. Arrhythmia after MI can lead to sudden cardiac death, which seriously affects the survival outcome of patients. WenXin KeLi is a Chinese patent medicine for the treatment of arrhythmia in a clinic, which can significantly improve symptoms of palpitation and play an important role in reducing the risk of arrhythmia after MI. In this study, we aimed to explore the pharmacological mechanism of WenXin KeLi in protecting the heart.

Methods: The MI model was established by ligating the left coronary artery and the ventricular fibrillation threshold (VFT) was measured by electrical stimulation. The expression of connexin43 (CX43) and autophagy-related protein were measured by Western Blot, and correlation analysis was conducted to study the relationship between cardiac autophagy, CX43, and arrhythmia in rats after MI. The effects of WenXin KeLi on arrhythmia, cardiac structure, and function in MI rats were respectively observed by electrical stimulation, cardiac gross section, Masson staining, and cardiac ultrasound. The effects of WenXin KeLi on the expression of phosphoinositide 3 kinase-protein kinase B-mammalian targets of rapamycin (PI3K-AKT-mTOR) autophagy pathway and CX43 were observed by Western Blot.

Results: After 4 weeks of MI, the VFT in the model group was significantly reduced, the expression levels of yeast ATG6 homolog (Beclin1), microtubule-associated protein 1A/1B-light chain 3 (LC3II/LC3I), and p-CX43 (S368) significantly increased, the expression of sequestosome-1(P62) and CX43 significantly decreased. LC3II/LC3I and Beclin1 expression were significantly negatively correlated with the VFT, and the expression of P62 and CX43 were significantly positively correlated with the VFT. LC3II/LC3I and Beclin1 expression were negatively correlated with CX43 expression, while P62 expression was positively correlated with CX43 expression. WenXin KeLi could significantly increase the VFT, reduce the deposition of collagen fibers, and increase the index levels of the left ventricular end-diastolic anterior wall (LVEDAW), interventricular septum end-diastolic (IVSED), left ventricular end-systolic anterior wall (LVESAW), interventricular septum end-systolic (IVSES), left ventricular end-diastolic posterior wall (LVEDPW), left ventricular end-systolic posterior wall (LVESPW), left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), and reduce the index levels of the left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD), left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV). WenXin KeLi could increase the expression of CX43, P62, AKT, p-PI3K, p-AKT (308), p-AKT (473), and p-mTOR and decrease the expression of LC3II/LC3I and Beclin1.

Conclusion: WenXin KeLi can activate the PI3K-AKT-mTOR signaling pathway, improve cardiac autophagy and Cx43 expression in rats after MI, reduce the risk of arrhythmia after MI, and play a cardioprotective role.

Reference Type
Journal Article
Authors
Lv M, Yang D, Ji X, Lou L, Nie B, Zhao J, Wu A, Zhao M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference