Reference: Conacher CG, et al. (2022) A Transcriptomic Analysis of Higher-Order Ecological Interactions in a Eukaryotic Model Microbial Ecosystem. mSphere 7(6):e0043622

Reference Help

Abstract


Nonlinear ecological interactions within microbial ecosystems and their contribution to ecosystem functioning remain largely unexplored. Higher-order interactions, or interactions in systems comprised of more than two members that cannot be explained by cumulative pairwise interactions, are particularly understudied, especially in eukaryotic microorganisms. The wine fermentation ecosystem presents an ideal model to study yeast ecosystem establishment and functioning. Some pairwise ecological interactions between wine yeast species have been characterized, but very little is known about how more complex, multispecies systems function. Here, we evaluated nonlinear ecosystem properties by determining the transcriptomic response of Saccharomyces cerevisiae to pairwise versus tri-species culture. The transcriptome revealed that genes expressed during pairwise coculture were enriched in the tri-species data set but also that just under half of the data set comprised unique genes attributed to a higher-order response. Through interactive protein-association network visualizations, a holistic cell-wide view of the gene expression data was generated, which highlighted known stress response and metabolic adaptation mechanisms which were specifically activated during tri-species growth. Further, extracellular metabolite data corroborated that the observed differences were a result of a biotic stress response. This provides exciting new evidence showing the presence of higher-order interactions within a model microbial ecosystem. IMPORTANCE Higher-order interactions are one of the major blind spots in our understanding of microbial ecosystems. These systems remain largely unpredictable and are characterized by nonlinear dynamics, in particular when the system is comprised of more than two entities. By evaluating the transcriptomic response of S. cerevisiae to an increase in culture complexity from a single species to two- and three-species systems, we were able to confirm the presence of a unique response in the more complex setting that could not be explained by the responses observed at the pairwise level. This is the first data set that provides molecular targets for further analysis to explain unpredictable ecosystem dynamics in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Conacher CG, Naidoo-Blassoples RK, Rossouw D, Bauer FF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference