Reference: Fangaria N, et al. (2022) DNA damage-induced nuclear import of HSP90α is promoted by Aha1. Mol Biol Cell 33(14):ar140

Reference Help

Abstract


The interplay between yHSP90α (Hsp82) and Rad51 has been implicated in the DNA double-strand break repair (DSB) pathway in yeast. Here we report that nuclear translocation of yHSP90α and its recruitment to the DSB end are essential for homologous recombination (HR)-mediated DNA repair in yeast. The HsHSP90α possesses an amino-terminal extension which is phosphorylated upon DNA damage. We find that the absence of the amino-terminal extension in yHSP90α does not compromise its nuclear import, and the nonphosphorylatable-mutant HsHSP90αT7A could be imported to the yeast nucleus upon DNA damage. Interestingly, the flexible charged-linker (CL) domains of both yHSP90α and HsHSP90α play a critical role during their nuclear translocation. The conformational restricted CL mutant yHSP90α∆(211-259), but not a shorter deletion version yHSP90α∆(211-242), fails to reach the nucleus. As the CL domain of yHSP90α is critical for its interaction with Aha1, we investigated whether Aha1 promotes the nuclear import of yHSP90α. We found that the nuclear import of yHSP90α is severely affected in ∆aha1 strain. Moreover, Aha1 is accumulated in the nucleus during DNA damage. Hence Aha1 may serve as a potential target for inhibiting nuclear function of yHSP90α. The increased sensitivity of ∆aha1 strain to genotoxic agents strengthens this notion.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Fangaria N, Rani K, Singh P, Dey S, Kumar KA, Bhattacharyya S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference