Reference: Matsumoto A, et al. (2022) A rapid and simple spectroscopic method for the determination of yeast cell viability using methylene blue. Yeast 39(11-12):607-616

Reference Help

Abstract


Determination of cell viability is important in various microbiological studies. The microscopic method, counting dead cells stained by methylene blue (MB), has often been used for the determination of viability, although it is not efficient for the measurement of a large number of samples. Alternatively, some spectroscopic methods have been proposed to avoid tedious cell counting. One of these proposed methods detects the decrease in MB absorbance in the supernatant of cell suspension, because dead cells incorporate MB more efficiently than viable cells. However, at present, this spectroscopic method is rarely used due to its low throughput. Therefore, we devised a small-scale, rapid and simple method by improving several points as follows. (1) The peak wavelength of MB absorbance, 665 nm, was used to detect MB efficiently at the microtube scale. (2) The composition of the MB solution was improved by adding trisodium citrate. (3) The reaction time was shortened. And (4) the concentration ranges of both MB and cells, with which absorbance is linearly related to cell viability, were determined. The improved method enabled us to evaluate the dose-dependent toxicities of alcohols, antifungal/antimalarial quinacrine, and UV-C irradiation. The results were compatible with those of conventional microscopic counting and colony formation. The method would be applicable to automated determination and to various organisms such as bacteria and filamentous fungi which are difficult to be counted microscopically.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Matsumoto A, Terashima I, Uesono Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference