Reference: Xu M, et al. (2023) Engineering Pheromone-Mediated Quorum Sensing with Enhanced Response Output Increases Fucosyllactose Production in Saccharomyces cerevisiae. ACS Synth Biol 12(1):238-248

Reference Help

Abstract


Engineering dynamic control of gene expression is desirable because many engineered functions interfere with endogenous cellular processes that have evolved to facilitate growth and survival. Minimizing conflict between growth and production phases can therefore improve product titers in microbial cell factories. We developed an autoinduced gene expression system by rewiring the Saccharomyces cerevisiae pheromone response pathway. To ameliorate growth reduction due to the early onset response at low population densities, α-pheromone of Kluyveromyces lactis (Kα) instead of S. cerevisiae (Sα) was expressed in mating type "a" yeast. Kα-induced expression of pathway genes was further enhanced by the transcriptional activator Gal4p expressed under the control of the pheromone-responsive FUS1 promoter (Pfus1). As a demonstration, the engineered circuit combined with the deletion of the endogenous galactose metabolic pathway genes was applied to the production of human milk oligosaccharides, 2'-fucosyllactose (2'-FL) and 3-fucosllactose (3-FL). The engineered strains produced 3.37 g/L 2'-FL and 2.36 g/L 3-FL on glucose with a volumetric productivity of 0.14 and 0.03 g/L·h-1 in batch flask cultivation, respectively. These represented 147 and 153% increases over the control strains on galactose wherein the respective pathway genes are expressed under GAL promoters only. Further fed-batch fermentation achieved titers of 32.05 and 20.91 g/L for 2' and 3-FL, respectively. The genetic program developed here thus represents a promising option for implementing dynamic regulation in yeast and could be used for the production of biochemicals that may place a heavy metabolic burden on cell growth.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Xu M, Sun M, Meng X, Zhang W, Shen Y, Liu W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference