Reference: Xia H, et al. (2022) Evolutionary and reverse engineering in Saccharomyces cerevisiae reveals a Pdr1p mutation-dependent mechanism for 2-phenylethanol tolerance. Microb Cell Fact 21(1):269

Reference Help

Abstract


Background: 2-Phenylethanol (2-PE), a higher alcohol with a rose-like odor, inhibits growth of the producer strains. However, the limited knowledge regarding 2-PE tolerance mechanisms renders our current knowledge base insufficient to inform rational design.

Results: To improve the growth phenotype of Saccharomyces cerevisiae under a high 2-PE concentration, adaptive laboratory evolution (ALE) was used to generate an evolved 19-2 strain. Under 2-PE stress, its OD600 and growth rate increased by 86% and 22% than that of the parental strain, respectively. Through whole genome sequencing and reverse engineering, transcription factor Pdr1p mutation (C862R) was revealed as one of the main causes for increased 2-PE tolerance. Under 2-PE stress condition, Pdr1p mutation increased unsaturated fatty acid/saturated fatty acid ratio by 42%, and decreased cell membrane damage by 81%. Using STRING website, we identified Pdr1p interacted with some proteins, which were associated with intracellular ergosterol content, reactive oxygen species (ROS), and the ATP-binding cassette transporter. Also, the results of transcriptional analysis of genes encoded these proteins confirmed that Pdr1p mutation induced the expression of these genes. Compared with those of the reference strain, the ergosterol content of the PDR1_862 strain increased by 72%-101%, and the intracellular ROS concentration decreased by 38% under 2-PE stress. Furthermore, the Pdr1p mutation also increased the production of 2-PE (11% higher).

Conclusions: In the present work, we have demonstrated the use of ALE as a powerful tool to improve yeast tolerance to 2-PE. Based on the reverse engineering, transcriptional and physiological analysis, we concluded that Pdr1p mutation significantly enhanced the 2-PE tolerance of yeast by regulating the fatty acid proportion, intracellular ergosterol and ROS. It provides new insights on Pdr1p mediated 2-PE tolerance, which could help in the design of more robust yeasts for natural 2-PE synthesis.

Reference Type
Journal Article
Authors
Xia H, Kang Y, Ma Z, Hu C, Yang Q, Zhang X, Yang S, Dai J, Chen X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference