Reference: Neumann H, et al. (2023) The Histone Variant H2A.Z C-Terminal Domain Has Locus-Specific Differential Effects on H2A.Z Occupancy and Nucleosome Localization. Microbiol Spectr 11(2):e0255022

Reference Help

Abstract


The incorporation of histone variant H2A.Z into nucleosomes creates specialized chromatin domains that regulate DNA-templated processes, such as gene transcription. In Saccharomyces cerevisiae, the diverging H2A.Z C terminus is thought to provide the H2A.Z exclusive functions. To elucidate the roles of this H2A.Z C terminus genome-wide, we used derivatives in which the C terminus was replaced with the corresponding region of H2A (ZA protein), or the H2A region plus a transcriptional activating peptide (ZA-rII'), with the intent of regenerating the H2A.Z-dependent regulation globally. The distribution of these H2A.Z derivatives indicates that the H2A.Z C-terminal region is crucial for both maintaining the occupation level of H2A.Z and the proper positioning of targeted nucleosomes. Interestingly, the specific contribution on incorporation efficiency versus nucleosome positioning varies enormously depending on the locus analyzed. Specifically, the role of H2A.Z in global transcription regulation relies on its C-terminal region. Remarkably, however, this mostly involves genes without a H2A.Z nucleosome in the promoter. Lastly, we demonstrate that the main chaperone complex which deposits H2A.Z to gene regulatory region (SWR1-C) is necessary to localize all H2A.Z derivatives at their specific loci, indicating that the differential association of these derivatives is not due to impaired interaction with SWR1-C. IMPORTANCE We provide evidence that the Saccharomyces cerevisiae C-terminal region of histone variant H2A.Z can mediate its special function in performing gene regulation by interacting with effector proteins and chaperones. These functional interactions allow H2A.Z not only to incorporate to very specific gene regulatory regions, but also to facilitate the gene expression process. To achieve this, we used a chimeric protein which lacks the native H2A.Z C-terminal region but contains an acidic activating region, a module that is known to interact with components of chromatin-remodeling entities and/or transcription modulators. We reasoned that because this activating region can fulfill the role of the H2A.Z C-terminal region, at least in part, the role of the latter would be to interact with these activating region targets.

Reference Type
Journal Article
Authors
Neumann H, Jeronimo C, Lucier JF, Pasquier E, Robert F, Wellinger RJ, Gaudreau L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference