Background: Owing to the Crabtree effect, Saccharomyces cerevisiae produces a large amount of ethanol in the presence of oxygen and excess glucose, leading to a loss of carbon for the biosynthesis of non-ethanol chemicals. In the present study, the potential of a newly constructed Crabtree negative S. cerevisiae, as a chassis cell, was explored for the biosynthesis of various non-ethanol compounds.
Results: To understand the metabolic characteristics of Crabtree negative S. cerevisiae sZJD-28, its transcriptional profile was compared with that of Crabtree positive S. cerevisiae CEN.PK113-11C. The reporter GO term analysis showed that, in sZJD-28, genes associated with translational processes were down-regulated, while those related to carbon metabolism were significantly up-regulated. To verify a potential increase in carbon metabolism for the Crabtree negative strain, the production of non-ethanol chemicals, derived from different metabolic nodes, was then undertaken for both sZJD-28 and CEN.PK113-11C. At the pyruvate node, production of 2,3-butanediol and lactate in sZJD-28-based strains was remarkably higher than that of CEN.PK113-11C-based ones, representing 16.8- and 1.65-fold increase in titer, as well as 4.5-fold and 0.65-fold increase in specific titer (mg/L/OD), respectively. Similarly, for shikimate derived p-coumaric acid, the titer of sZJD-28-based strain was 0.68-fold higher than for CEN.PK113-11C-based one, with a 0.98-fold increase in specific titer. While farnesene and lycopene, two acetoacetyl-CoA derivatives, showed 0.21- and 1.88-fold increases in titer, respectively. From malonyl-CoA, the titer of 3-hydroxypropionate and fatty acids in sZJD-28-based strains were 0.19- and 0.76-fold higher than that of CEN.PK113-11C-based ones, respectively. In fact, yields of products also improved by the same fold due to the absence of residual glucose. Fed-batch fermentation further showed that the titer of free fatty acids in sZJD-28-based strain 28-FFA-E reached 6295.6 mg/L with a highest reported specific titer of 247.7 mg/L/OD in S. cerevisiae.
Conclusions: Compared with CEN.PK113-11C, the Crabtree negative sZJD-28 strain displayed a significantly different transcriptional profile and obvious advantages in the biosynthesis of non-ethanol chemicals due to redirected carbon and energy sources towards metabolite biosynthesis. The findings, therefore, suggest that a Crabtree negative S. cerevisiae strain could be a promising chassis cell for the biosynthesis of various chemicals.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | File | Description |
---|