Reference: Tian J, et al. (2023) Effects of Saccharomyces cerevisiae quorum sensing signal molecules on ethanol production in bioethanol fermentation process. Microbiol Res 271:127367

Reference Help

Abstract


In this study, the concentrations of Saccharomyces cerevisiae quorum sensing signal molecules (QSMs) were determined, not to mention the exploration of the effects of exogenous S. cerevisiae QSMs on the sole fermentation of S. cerevisiae and co-fermentation of S. cerevisiae and Lactobacillus plantarum. The results showed that the concentrations of three signal molecules (2-phenylethanol (2-PE), tyrosol and tryptophan) produced by S. cerevisiae increased with a higher bacteria density, which tends to become stable up to 118.02, 32.05 and 1.93 mg/L respectively when cultivating for 144 h. Among the three signaling molecules, only 2-PE promoted the ethanol production capacity of S. cerevisiae. The ethanol concentration of the sole fermentation of S. cerevisiae loaded with 120 mg/L 2-PE reached 3.2 g/L in 9 h, which was 58.7% higher than that of the group without 2-PE addition. Moreover, 2-PE reduced the negative impact of L. plantarum on S. cerevisiae. Within 12 h of the co-fermentation of L. plantarum and S. cerevisiae, the ethanol concentration in the co-fermentation group loaded with 2-PE reached 5.6 g/L, similar to that in the group fermenting with sole S. cerevisiae, and the yeast budding rate was also restored to 28.51%. qRT-PCR results of S. cerevisiae which was in sole fermentation with 2-PE addition for 9 h showed that the relative expression levels of ethanol dehydrogenase gene ADH1 in S. cerevisiae decreased by 25% and the relative expression levels of MLS1, CIT2, IDH1,CIT1 decreased by 26%, 30%, 22%,18%, respectively, meant that the glyoxylic and tricarboxylic acid cycles were greatly inhibited, which promotes the accumulation of ethanol. The results of this study provide basic data for using QSMs more than antibiotics in the the prevention of contamination during the industrialized bioethanol production.

Reference Type
Journal Article
Authors
Tian J, Lin Y, Su X, Tan H, Gan C, Ragauskas AJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference