Reference: Du MM, et al. (2023) Boosting the epoxidation of squalene to produce triterpenoids in Saccharomyces cerevisiae. Biotechnol Biofuels Bioprod 16(1):76

Reference Help

Abstract


Background: Polycyclic triterpenoids (PTs) are common in plants, and have attracted considerable interest due to their remarkable biological activities. Currently, engineering the ergosterol synthesis pathway in Saccharomyces cerevisiae is a safe and cost-competitive way to produce triterpenoids. However, the strict regulation of ERG1 involved in the epoxidation of squalene limits the triterpenoid production.

Results: In this study, we found that the decrease in ERG7 protein level could dramatically boost the epoxidation of squalene by improving the protein stability of ERG1. We next explored the potential factors that affected the degradation process of ERG1 and confirmed that ERG7 was involved in the degradation process of ERG1. Subsequently, expression of four different triterpene cyclases utilizing either 2,3-oxidosqualene or 2,3:22,23-dioxidosqualene as the substrate in ERG7-degraded strains showed that the degradation of ERG7 to prompt the epoxidation of squalene could significantly increase triterpenoid production. To better display the potential of the strategy, we increased the supply of 2,3-oxidosqualene, optimized flux distribution between ergosterol synthesis pathway and β-amyrin synthesis pathway, and modified the GAL-regulation system to separate the growth stage from the production stage. The best-performing strain ultimately produced 4216.6 ± 68.4 mg/L of β-amyrin in a two-stage fed-fermentation (a 47-fold improvement over the initial strain).

Conclusions: This study showed that deregulation of the native restriction in ergosterol pathway was an effective strategy to increase triterpenoid production in yeast, which provided a new insight into triterpenoids biosynthesis.

Reference Type
Journal Article
Authors
Du MM, Zhang GG, Zhu ZT, Zhao YQ, Gao B, Tao XY, Wang FQ, Wei DZ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference