Reference: Peng H, et al. (2023) Modular Metabolic Engineering and Synthetic Coculture Strategies for the Production of Aromatic Compounds in Yeast. ACS Synth Biol 12(6):1739-1749

Reference Help

Abstract


Microbial-derived aromatics provide a sustainable and renewable alternative to petroleum-derived chemicals. In this study, we used the model yeast Saccharomyces cerevisiae to produce aromatic molecules by exploiting the concept of modularity in synthetic biology. Three different modular approaches were investigated for the production of the valuable fragrance raspberry ketone (RK), found in raspberry fruits and mostly produced from petrochemicals. The first strategy used was modular cloning, which enabled the generation of combinatorial libraries of promoters to optimize the expression level of the genes involved in the synthesis pathway of RK. The second strategy was modular pathway engineering and involved the creation of four modules, one for product formation: RK synthesis module (Mod. RK); and three for precursor synthesis: aromatic amino acid synthesis module (Mod. Aro), p-coumaric acid synthesis module (Mod. p-CA), and malonyl-CoA synthesis module (Mod. M-CoA). The production of RK by combinations of the expression of these modules was studied, and the best engineered strain produced 63.5 mg/L RK from glucose, which is the highest production described in yeast, and 2.1 mg RK/g glucose, which is the highest yield reported in any organism without p-coumaric acid supplementation. The third strategy was the use of modular cocultures to explore the effects of division of labor on RK production. Two two-member communities and one three-member community were created, and their production capacity was highly dependent on the structure of the synthetic community, the inoculation ratio, and the culture media. In certain conditions, the cocultures outperformed their monoculture controls for RK production, although this was not the norm. Interestingly, the cocultures showed up to 7.5-fold increase and 308.4 mg/L of 4-hydroxy benzalacetone, the direct precursor of RK, which can be used for the semi-synthesis of RK. This study illustrates the utility of modularity in synthetic biology tools and their applications to the synthesis of products of industrial interest.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Peng H, Chen R, Shaw WM, Hapeta P, Jiang W, Bell DJ, Ellis T, Ledesma-Amaro R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference