Reference: Ding JL, et al. (2024) Two aminopeptidase I homologs convergently contribute to pathobiology of fungal entomopathogen Beauveria bassiana via divergent physiology-dependent autophagy pathways for vacuolar targeting. J Adv Res 59:1-17

Reference Help

Abstract


Introduction: In yeast, the cytoplasm-to-vacuole targeting (Cvt) pathway acts as a biosynthetic autophagy-related process, in which vacuolar targeting of hydrolase is mediated by the machineries involved in the selective autophagy. However, the mechanistic insights into vacuolar targeting of hydrolases through the selective autophagy pathway still remain enigmatic in filamentous fungi.

Objectives: Our study aims to investigate the mechanisms involved in vacuolar targeting of hydrolases in filamentous fungi.

Methods: The filamentous entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi. We identified the homologs of yeast aminopeptidase I (Ape1) in B. bassiana by bioinformatic analyses and characterized their physiological roles by gene function analyses. Pathways for vacuolar targeting of hydrolases were investigated via molecular trafficking analyses.

Results: B. bassiana has two homologs of yeast aminopeptidase I (Ape1) which are designated as BbApe1A and BbApe1B. The two homologs of yeast Ape1 contribute to starvation tolerance, development, and virulence in B. bassiana. Significantly, BbNbr1 acts as a selective autophagy receptor to mediate the vacuolar targeting of the two Ape1 proteins, in which BbApe1B interacts with BbNbr1 also directly interacting with BbAtg8, and BbApe1A has an additional requirement of the scaffold protein BbAtg11 that interacts with BbNbr1 and BbAtg8. Protein processing occurs at both terminuses of BbApe1A and only at carboxyl terminus of BbApe1B, which is also dependent on the autophagy-related proteins. Together, the functions and translocation processes of the two Ape1 proteins are associated with autophagy in fungal lifecycle.

Conclusion: This study reveals the functions and translocation processes for vacuolar hydrolases in the insect-pathogenic fungi and improves our understandings of the Nbr1-mediated vacuolar targeting pathway in the filamentous fungi.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ding JL, Wei K, Feng MG, Ying SH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference