Reference: Payra AK, et al. (2024) MEM-FET: Essential protein prediction using membership feature and machine learning approach. Proteins 92(1):60-75

Reference Help

Abstract


Proteins are played key roles in different functionalities in our daily life. All functional roles of a protein are a bit enhanced in interaction compared to individuals. Identification of essential proteins of an organism is a time consume and costly task during observation in the wet lab. The results of observation in wet lab always ensure high reliability and accuracy in the biological ground. Essential protein prediction using computational approaches is an alternative choice in research. It proves its significance rapidly in day-to-day life as well as reduces the experimental cost of wet lab effectively. Existing computational methods were implemented using Protein interaction networks (PPIN), Sequence, Gene Expression Dataset (GED), Gene Ontology (GO), Orthologous groups, and Subcellular localized datasets. Machine learning has diverse categories of features that enable to model and predict essential macromolecules of understudied organisms. A novel methodology MEM-FET (membership feature) is predicted based on features, that is, edge clustering coefficient, Average clustering coefficient, subcellular localization, and Gene Ontology within a compartment of common neighbors. The accuracy (ACC) values of the predicted true positive (TP) essential proteins are 0.79, 0.74, 0.78, and 0.71 for YHQ, YMIPS, YDIP, and YMBD datasets. An enriched set of essential proteins are also predicted using the MEM-FET algorithm. Ensemble ML also validated the proposed model with an accuracy of 60%. It has been predicted that MEM-FET algorithms outperform other existing algorithms with an ACC value of 80% for the yeast dataset.

Reference Type
Journal Article
Authors
Payra AK, Saha B, Ghosh A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference